Identification of human liver cytochrome P450 enzymes responsible for the metabolism of lonafarnib (Sarasar).

نویسندگان

  • Anima Ghosal
  • Swapan K Chowdhury
  • Wei Tong
  • Neil Hapangama
  • Yuan Yuan
  • Ai-Duen Su
  • Shmuel Zbaida
چکیده

Lonafarnib (Sarasar), a farnesyl transferase inhibitor, is currently under development for the treatment of solid tumors. Incubation of lonafarnib with human liver microsomes resulted in the formation of four oxidative metabolites (M1, M2, M3, and M4). Minor to trace levels of these metabolites were detected in humans after multiple-dose administration of lonafarnib. Liquid chromatography-mass spectrometry analyses exhibited a mass to charge ratio (m/z) for the (M+H)(+) ion of M1, M2, M3, and M4 at 653, 635, 669, and 653 Th, respectively. These metabolites, respectively, resulted from changes of +O, -2H, +2O, and +O relative to lonafarnib. Recombinant human CYP3A4 and CYP3A5 exhibited catalytic activity with respect to the formation of M1, M2, and M3, whereas CYP2C8 exhibited catalytic activity with respect to the formation of M4. There was a high correlation between the formation of M1, determined in 10 human liver microsomal samples, and 6beta-hydroxylation of testosterone catalyzed by CYP3A4/5 (r = 0.93). The IC(50) values of ketoconazole for inhibition of M1 and M2 were 0.61 and 0.92 microM, respectively. The formation of M4 by human liver microsomes was inhibited 72% by 50 microM quercetin, suggesting that the formation of M4 was mediated via CYP2C8. A CYP3A4/5-specific inhibitory monoclonal antibody inhibited the formation of M1, M2, and M3 by 85, 75, and 100%, respectively. In conclusion, the formation of metabolites M1, M2, and M3 from lonafarnib was mediated via CYP3A4 and CYP3A5.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In vitro identification of the P450 enzymes responsible for the metabolism of ropinirole.

The in vitro metabolism of ropinirole was investigated with the aim of identifying the cytochrome P450 enzymes responsible for its biotransformation. The pathways of metabolism after incubation of ropinirole with human liver microsomes were N-despropylation and hydroxylation. Enzyme kinetics demonstrated the involvement of at least two enzymes contributing to each pathway. A high affinity compo...

متن کامل

Investigating the Lethal Effects of Lead Chloride (PbCl2) on Blood Indices, Liver Enzymes and Evaluation on Cytochrome P450 Gene Expression in Common Carp (Cyprinus carpio)

The aim of this study was to investigate the sub-lethal effects Lead Chloride (PbCl2) on blood indices, liver enzymes, cytochrome P450 gene expression in common carp. For this purpose, Fish with a mean weight of 7 33±0.33 g were prepared and divided into 3 treatments and a control group and exposed to effective concentrations (0.05, 0.15, 0.25 mg / l) of sublethal toxicity for a period of 14 da...

متن کامل

Expression of cytochrome P450 and glutathione S-transferase in human bone marrow mesenchymal stem cells

Currently several studies are being carried out on various properties of mesenchymal stem cells (MSCs)however there are a few investigations about drug metabolizing properties of these cells. The aim of thisstudy was to measure the key factors involved in drug metabolism in human bone marrow MSCs. For thispurpose, cellular glutathione (GSH), glutathione Stransferase (GSTs) and...

متن کامل

In vitro identification of the human cytochrome P450 enzymes involved in the metabolism of R(+)- and S(-)-carvedilol.

Both the R(+) and the S(-) enantiomers of carvedilol were metabolized in human liver microsomes primarily to 4'- (4OHC) and 5'-(5OHC) hydroxyphenyl, 8-hydroxy carbazolyl (8OHC) and O-desmethyl (ODMC) derivatives. The S(-) enantiomer was metabolized faster than the R(+) enantiomer although the same P450 enzymes seemed to be involved in each case. A combination of multivariate correlation analysi...

متن کامل

Identification of Intracellular Sources Responsible for Endogenous Reactive Oxygen Species Formation

The endogenous reactive oxygen species ("ROS") formation is associated with many pathologic states such as inflammatory diseases, neurodegenerative diseases, brain and heart ischemic injuries, cancer, and aging. The purpose of this study was to investigate the endogenous sources for "ROS" formation in intact isolated rat hepatocytes, in particular, peroxisomal oxidases, monoamine oxidase, xanth...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Drug metabolism and disposition: the biological fate of chemicals

دوره 34 4  شماره 

صفحات  -

تاریخ انتشار 2006